채채
정렬 알고리즘 본문
- 정렬(Sorting)이란 데이터를 특정한 기준에 따라 순서대로 나열하는 것을 말한다.
- 일반적으로 문제 상황에 따라서 적절한 정렬 알고리즘이 공식처럼 사용된다.
선택 정렬
처리되지 않은 데이터 중에서 가장 작은 데이터를 선택해 맨 앞에 있는 데이터와 바꾸는 것을 반복
=> 이중 반복문 사용, O(N²)
array = [7, 5, 9, 0, 3, 1, 6, 2, 4, 8]
for i in range(len(array)):
min_index = i # 가장 작은 원소의 인덱스
for j in range(i + 1, len(array)):
if array[min_index] > array[j]:
min_index = j
array[i], array[min_index] = array[min_index], array[i] # 스와프
print(array)
삽입 정렬
- 처리되지 않은 데이터를 하나씩 골라 적절한 위치에 삽입한다.
- 선택 정렬에 비해 구현 난이도가 높은 편이지만, 일반적으로 선택 정렬에 비해 더 효율적으로 동작한다.
=> O(N²)
array = [7, 5, 9, 0, 3, 1, 6, 2, 4, 8]
for i in range(1, len(array)):
for j in range(i, 0, -1): # 인덱스 i부터 0까지 1씩 감소하며 반복
if array[j] < array[j - 1]: # 한 칸씩 왼쪽으로 이동
array[j], array[j - 1] = array[j - 1], array[j]
else: # 자기보다 작은 데이터를 만나면 그 위치에서 멈춤
break
print(array)
퀵 정렬
- 기준 데이터를 설정하고 그 기준보다 큰 데이터와 작은 데이터의 위치를 바꾸는 방법
- 일반적으로 가장 많이 사용되며, 병합 정렬과 더불어 정렬 라이브러리의 근간이 되는 알고리즘
- 가장 기본적인 퀵 정렬은 첫 번째 데이터를 기준 데이터(Pivot)로 설정함
=> O(NlogN) ~ O(N²)
array = [7, 5, 9, 0, 3, 1, 6, 2, 4, 8]
def quick_sort(array, start, end):
if start >= end: # 원소가 1개인 경우 종료
return
pivot = start # 피벗은 첫 번째 원소
left = start + 1
right = end
while(left <= right):
# 피벗보다 큰 데이터를 찾을 때까지 반복
while(left <= end and array[left] <= array[pivot]):
left += 1
# 피벗보다 작은 데이터를 찾을 때까지 반복
while(right > start and array[right] >= array[pivot]):
right -= 1
if (left > right): # 엇갈렸다면 작은 데이터와 피벗을 교체
array[right], array[pivot] = array[pivot], array[right]
else: # 엇갈리지 않았다면 작은 데이터와 큰 데이터를 교체
array[left], array[right] = array[right], array[left]
# 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬 수행
quick_sort(array, start, right - 1)
quick_sort(array, right + 1, end)
quick_sort(array, 0, len(array) - 1)
print(array)
array = [7, 5, 9, 0, 3, 1, 6, 2, 4, 8]
def quick_sort(array):
# 리스트가 하나 이하의 원소만을 담고 있다면 종료
if len(array) <= 1:
return array
pivot = array[0] # 피벗은 첫 번째 원소
tail = array[1:] # 피벗을 제외한 리스트
left_side = [x for x in tail if x <= pivot] # 분할된 왼쪽 부분
right_side = [x for x in tail if x > pivot] # 분할된 오른쪽 부분
# 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬 수행하고, 전체 리스트 반환
return quick_sort(left_side) + [pivot] + quick_sort(right_side)
print(quick_sort(array))
계수 정렬
- 특정한 조건이 부합할 때만 사용할 수 있지만 매우 빠르게 동작하는 알고리즘
- 데이터의 크기 범위가 제한되어 정수 형태로 표현할 수 있을 때 사용 가능
- 데이터의 개수가 N, 데이터(양수) 중 최댓값이 K일 때 O(N + K)
# 모든 원소의 값이 0보다 크거나 같다고 가정
array = [7, 5, 9, 0, 3, 1, 6, 2, 9, 1, 4, 8, 0, 5, 2]
# 모든 범위를 포함하는 리스트 선언(모든 값은 0으로 초기화)
count = [0] * (max(array) + 1)
for i in range(len(array)):
count[array[i]] += 1 # 각 데이터에 해당하는 인덱스의 값 증가
for i in range(len(count)):
for j in range(count[i]):
print(i, end=' ')
'Python' 카테고리의 다른 글
DFS/BFS (0) | 2023.11.08 |
---|---|
복잡도(Complexity) (0) | 2023.11.07 |